
DRAFT

ZeroDetect: Boundary-Aware Generative Modeling
for Zero-Day Malware Detection

Aryan Singh
Poolesville High School
Poolesville, MD, USA

Mark Stamp
Department of Computer Science

San Jose State University
San Jose, California, USA

Abstract—Zero-day malware poses a critical challenge
to modern cybersecurity systems because it exploits pre-
viously unseen vulnerabilities and evades signature-based
detection. While machine learning approaches have im-
proved malware classification accuracy, many models de-
grade significantly under mutation and obfuscation, which
are real-world effects of zero-day malware. This work
introduces ZeroDetect, a malware detection framework
leveraging boundary-aware generative modeling. ZeroDe-
tect improves robustness against zero-day threats through
boundary-aware training and controlled perturbations.
Two datasets are aggregated for the training and evalua-
tion of the model, each having a large number of malware
and benign samples. An autoencoder is trained on the
malware samples to learn compact latent representations
capturing malicious characteristics, which are then fed
into a denoising diffusion implicit model (DDIM) for
synthetic malware generation. An XGBoost classifier is
trained on a dataset augmented with synthetic malware
for strengthened classification. A boundary-aware per-
turbation mechanism is then applied in latent space to
simulate realistic mutation, enabling evaluation on robust-
ness. Under progressively increasing latent perturbation
strength, the baseline classifier’s recall declines from 0.989
to 0.514, whereas ZeroDetect maintains recall above 0.91
at extreme perturbation levels, which demonstrates how
ZeroDetect improves generalization under simulated zero-
day conditions. By reframing malware detection as a
robustness problem, ZeroDetect provides a stronger ap-
proach to defending against evolving cyber threats.

Index Terms—Network Intrusion Detection, Diffusion
Models, Adversarial Detection, OOD Detection

I. INTRODUCTION

Cybersecurity is becoming an ever-increasing
problem for the world’s digital operations. At the
heart of that problem is malicious software, also
known as malware, which is any software that harms
or otherwise adversely affects a computer. Malware
attacks have been increasing in both frequency and
severity as the evolution of malware has outpaced

traditional detection systems, with malware authors
constantly creating novel malware to avoid detection
called zero-day malware.

Zero-day malware refers to malicious software
from previously unseen families with behavior that
has not been previously observed. These threats
rely on exploiting innovative methods of attacking a
system using vulnerabilities that haven’t been seen
by security teams. Detecting such threats requires
more than memorizing known patterns, it neces-
sitates understanding the underlying semantics of
malicious execution.

Traditional signature-based malware detectors fail
on zero-day threats due to signatures not being
able to anticipate unseen variants. As a result, mal-
ware detection systems are becoming increasingly
reliant on machine learning models trained on large
datasets of known malicious and benign software.
While these systems achieve high accuracy on stan-
dard benchmarks, the underlying assumption for
these detection systems is that future malware will
resemble previously observed samples, which is
flawed. Real-world attackers actively design mal-
ware to evade existing detection mechanisms, and
zero-day malware is the epitome of this as it is
novel malware from previously unseen families or
malware designed with novel obfuscation strategies.

The detection of zero-day malware should be
reframed as a robustness problem, as the insidious
nature of zero-day malware comes as a result of
evasion techniques and the overall evolution of mal-
ware. Therefore, the gap in current research is the
absence of evaluation against a simulated evolution
of malware strains.

ZeroDetect addresses this gap by creating a mal-
ware detection framework that specifically targets
boundary-challenging samples and measures the



DRAFT

performance of a detection model under increasing
amounts of adversarial perturbations. This makes
the detection model resistant to evasion techniques
and therefore more effective in detecting zero-day
threats.

While purely computational for now, the imple-
mentation of ZeroDetect’s improved zero-day de-
tection can strengthen cybersecurity protection for
individuals, companies, and critical infrastructure
systems. This ultimately reduces economic loss,
lowers downtime, and prevents breaches of sensitive
information.

II. BACKGROUND

A. Autoencoders

Autoencoders are neural architectures designed
to learn compact representations of input data by
minimizing reconstruction error between the orig-
inal input and its decoded output. Formally, an
encoder fθ maps input x to a latent vector z, while a
decoder gϕ reconstructs x′ from z. By constraining
the dimensionality of z, the model is forced to
capture salient structure in the data.

Autoencoders learn compressed representations
by minimizing the reconstruction loss function:

L(θ, φ) =
1

n

n∑
i=1

(xi − fθ(gφ(x
i)))2 (1)

where fθ is the encoder and gφ is the decoder.
In malware analysis, autoencoders have been em-

ployed for dimensionality reduction, anomaly detec-
tion, and feature learning. Their ability to extract
abstract representations makes them well-suited for
modeling execution behavior, particularly when raw
features are high-dimensional or sparse.

In ZeroDetect, we use an autoencoder to learn
latent embeddings of opcode-derived feature vec-
tors. Rather than directly classifying raw n-grams,
we first compress them into a lower-dimensional
space that captures shared characteristics across
malware families. This latent representation serves
as the foundation for downstream classification and
robustness analysis.

B. XGBoost Classifier

To perform final classification, we employ XG-
Boost, a gradient-boosted decision tree ensemble

known for its strong performance on structured data.
XGBoost iteratively builds trees to minimize a reg-
ularized objective function, offering robustness to
noise and the ability to model nonlinear interactions
between features.

Given the structured nature of our latent repre-
sentations, XGBoost provides an effective balance
between expressiveness and interpretability. It also
enables rapid experimentation and feature impor-
tance analysis, which aids in understanding model
behavior under perturbation.

C. Diffusion Models

Diffusion models have recently gained attention
for their ability to model complex distributions via
iterative noise injection and denoising processes.
Although not directly used in ZeroDetect’s cur-
rent pipeline, diffusion-based robustness research
motivates our perturbation strategy by emphasizing
how distributional changes can be amplified through
controlled transformations.

Our work adopts a similar philosophical stance:
zero-day malware should be evaluated through pro-
gressive distortion rather than static test splits.
While ZeroDetect currently implements perturba-
tions directly in feature space, diffusion-based ap-
proaches represent a promising future extension for
generative robustness testing.

III. RELATED WORKS

Machine learning–based malware detection has
explored a wide range of feature modalities, includ-
ing raw bytes [1], API call graphs [8], control-flow
graphs [9], and opcode sequences [10]. Opcode-
based methods offer a middle ground between low-
level bytes and high-level semantics, capturing ex-
ecution behavior while remaining computationally
tractable.

Deep learning approaches such as CNNs and
RNNs have demonstrated strong performance on
benchmark datasets [2,3], but their reliance on static
distributions limits real-world applicability. Several
studies have highlighted how minor obfuscations
can significantly degrade detection accuracy [11].

Zero-day detection is often framed as out-of-
distribution (OOD) detection or novelty detection
[12]. Techniques such as reconstruction error, en-
tropy scoring, and energy-based methods have been



DRAFT

proposed, yet many struggle to distinguish between
benign anomalies and truly malicious behavior.

More recent work emphasizes robustness to ad-
versarial perturbations [13], though most evaluations
remain confined to synthetic attacks rather than
realistic malware evolution. Crucially, existing lit-
erature rarely measures how detection performance
degrades as malware progressively mutates—a gap
ZeroDetect directly addresses.

IV. PRODECURES

A. Dataset Preparation
Collect malware and benign “.exe” samples

from MalwareBazaar and public repositories. Cre-
ate a bash script that uses the “objdump” linux
program to disassemble every “.exe” file into a
“.txt” file containing the opcode sequence of the
program. Load the opcode database into Google
Colab and tokenize each opcode sequence us-
ing scikit-learn’s HashingVectorizer. Tokenize into
word tokens and produce hashing n-gram features
(ngram = (1, 3), nfeatures = 214) to avoid vocabu-
lary leakage.

For each tokenized opcode sequence, compute
semantic features like sequence length, entropy,
unique ratio, and top-5 average frequency. Partition
this dataset with opcode feature vectors into a train-
ing set, a validation set, and a zero-day test set with
samples of a malware family not in the training or
validation set in order to perform a family-holdout
evaluation.

B. Latent Representation Learning
Train a deep autoencoder on malware opcode

feature vectors to learn compact latent embeddings.
Use pytorch DataLoader, mixed precision training,
and implement early-stopping criteria. Make sure
the model is optimized using reconstruction loss
to ensure that the latent space captures meaningful
structural information.

Extract latent representations from the bottleneck
layer into latent space Zmal and train a denoising
diffusion model that gravitates towards the deci-
sion boundary within this latent space to learn the
data distribution and generate synthetic, boundary-
challenging samples. Ensure the synthetic latents
are virtually indistinguishable from real latents by
checking for an accuracy greater than 99% and a

UMAP plot that shows synthetic malware points
overlapping real malware.

C. Classifier Training

Build several training conditions:
• Baseline: XGBoost on real training data only
• Augmented: XGBoost on real + synthetic

boundary malware
• Mixed: Real + synthetic + real benign
Evaluate on held-out families (family-holdout de-

sign) and on perturbed test sets. Establish baseline
and proposed performance comparisons. Use the
classification metrics of accuracy, precision, recall,
F1-score, and ROC-AUC, which should be com-
puted for all models.

D. Robustness Evaluation

Apply systematic perturbations to hold-out mal-
ware. Inject random smoothed gaussian noise in the
latent space at varying rates with an α parameter.
Measure evaluation metrics vs perturbation strength
(e.g. recall vs α) for all models.

V. DATA ANALYSIS

Performance metrics include accuracy, ROC-
AUC, confusion matrices, and recall under increas-
ing perturbation intensity. Robustness curves are
generated by measuring recall as a function of
mutation parameter α.

Fig. 1. Recall vs. α comparison between baseline and ZeroDetect.
Noticable dropoff in baseline detection performance.



DRAFT

Comparative analysis focuses on degradation rate.
For example, baseline recall decreased from ap-
proximately 0.989 at α = 0 to 0.513 at α = 15,
whereas the perturbation-aware model maintained
recall above 0.91 under the same extreme condi-
tions. The slope of degradation serves as the primary
robustness metric.

Latent space structure is analyzed using UMAP
visualization to examine separation between be-
nign samples, real malware, and perturbed zero-
day variants. Statistical comparisons assess whether
robustness improvements are significant.


